Section 11.2: Arithmetic Sequences and Series
Video 1: Arithmetic Sequences
An arithmetic sequence is a sequence in which each term differs from the preceding term by a fixed constant (common difference, d).

The common difference of an arithmetic sequence is given by $d=a_{n}-a_{n-1}$.

1) List the first 5 terms of the given arithmetic sequence.
a) The first term is 8 and the common difference is 10 .

$$
8,18,28,38,48
$$

b) $a_{1}=6, d=-5$

$$
6,1,-4,-9,-14
$$

Video 2: nth Term of an Arithmetic Sequence
In an arithmetic sequence with first term a_{1} and common difference d, the nth term a_{n} is given by the following:

2nd $1 d$
3rd ad th $3 d$
2) Find a_{19} and a_{n} for the given arithmetic sequence: $-9,-4,1,6, \ldots$

$$
-4-(-9)
$$

$$
1-(-4
$$

$$
\begin{aligned}
a_{19} & =a_{1}+18 \cdot d \\
& =-9+18 \cdot 5 \\
& =-9+90 \\
& =81
\end{aligned}
$$

$$
\begin{gathered}
a_{1} \quad{ }^{1-(-4} \\
a_{n}= \\
a_{n}+(n-1) \cdot d \\
a_{n}-1= \\
\\
\downarrow \\
a_{19}=-9+(n-1) \cdot 5 \\
=
\end{gathered}
$$

$$
6-1=5=d
$$

3) If an arithmetic sequence has terms $a_{2}=16$ and $a_{3}=9$, find a_{n} and a_{12}.

$$
\begin{aligned}
& d=a_{3}-a_{2}=9-16=-7 \\
& a_{1}+d=a_{2} \\
& a_{n}=a_{1}+(n-1) \cdot d \\
& a_{1}+(-7)=16 \\
& a_{n}=23+(n-1)(-7) \\
& \frac{+7+7}{a_{1}=23} \\
& a_{12}=23+(12-1)(-7) \\
& =23+11(-7) \\
& =23-77 \\
& =-54 \\
& a_{n}=30-7 n \\
& a_{12}=30-7(12)
\end{aligned}
$$

$$
\overbrace{2}^{6}
$$

4) If an arithmetic sequence has terms $a_{9}=22$ and $a_{15}=76$, find a_{1}.

$$
\begin{array}{rlrl}
6 \cdot d & =76-22 & a_{9} & =a_{1}+(9-1) \cdot d \\
6 d & =54 & 22 & =a_{1}+8 \cdot 9 \\
d & =9 & & \frac{22}{}=a_{1}+72 \\
& & & \\
& & -52 & =a
\end{array}
$$

Video 3: Arithmetic Series
If an arithmetic sequence has first term a_{1} and common difference d, the sum S_{n} of the first n terms is given by:

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

5) Find the sum of the first 100 positive integers.

$$
\begin{aligned}
a_{d=1}^{1,2,3,2}, \frac{100}{a_{100}}=100 & =\frac{100}{2}(1+100) \\
& =\frac{100 \cdot 101}{2}=5050
\end{aligned}
$$

$$
50 \quad 101 \text { 's }
$$

6) Find the sum of the first 15 odd positive integers.

$$
\begin{aligned}
& a_{1}=1 \\
& \underbrace{1}_{d}=2 \\
& a_{n}=a_{1}+(n-1) \cdot d \\
&=1+(n-1) \cdot 2 \\
& a_{15}=1+(15-1) \cdot 2 \\
&=1+14 \cdot 2 \\
&=29
\end{aligned}
$$

7) Find S_{15} for the arithmetic sequence $-\overbrace{\overbrace{8}^{-5,3}}^{8}$

$$
\begin{array}{rlrl}
a_{1} & =-13 \\
d & =8 & s_{15} & =\frac{15}{2}\left(a_{1}+a_{15}\right) \\
a_{n} & =a_{1}+(n-1) \cdot d & & =\frac{15}{2}(-13+99) \\
a_{15} & =-13+(15-1) \cdot 8 & & 43 \\
& =-13+14 \cdot 8 \\
& =-13+112 \\
& =99 & &
\end{array}
$$

$$
3600 \quad a_{20}=351
$$

8) If the sum of the first 20 terms of an arithmetic sequence is and find a_{1} and d.

$$
\begin{array}{ll}
S_{20}=3600 & a_{n}=a_{1}+(n-1) d \\
a_{20}=351 & n: 20 \\
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) & a_{20}=a_{1}+(20-1) d \\
S_{20}=\frac{20}{2}\left(a_{1}+351\right) & \begin{array}{l}
351=9+19 d \\
3600
\end{array}=10\left(a_{1}+351\right) \\
360 & =a_{1}+351 \\
9 & =a_{1}
\end{array}
$$

Video 4: Summation Notation and Arithmetic Series
9) Evaluate each sum.


```
\[
a_{1}=6(1)+11
\]
\[
=17
\]
```

$$
\begin{aligned}
a_{14} & =a_{1}+(14-1) d & S_{14} & =\frac{14}{2}\left(a_{1}+a_{14}\right) \\
a_{14} & =17+13 \cdot 6 & S_{14} & =\frac{14}{2}(17+95) \\
a_{14} & =17+78 & S_{14} & =7(112) \\
a_{14} & =95 & & =784
\end{aligned}
$$

$$
\text { Need } S_{6}
$$

b) $\sum_{i=5}^{10}(7-2 i)$

$$
i=5 \quad 7-2(5)=-3 \leftarrow a_{1}
$$

$$
\begin{gathered}
i=5 \rightarrow i=10 \\
6 \text { terms }
\end{gathered}
$$

$$
a_{6}=?
$$

$$
\begin{aligned}
a_{6} & =a_{1}+(6-1) d \\
& =-3+5(-2) \\
& =-13
\end{aligned}
$$

$$
\begin{aligned}
S_{6} & =\frac{6}{2}(-3+(-13)) \\
& =3(-16) \\
& =-48
\end{aligned}
$$

